TechNews Pictorial PriceGrabber Video Fri Nov 29 05:40:00 2024

0


Mapping neurological disease??New algorithm can analyze info
Source: Helen Knight


A functional magnetic resonance imaging (MRI) scan, left, and a diffuse MRI, right. Images: Functional MRI ― National Institutes of Health; Diffuse MRI ― Nevit Dilmen/Wikimedia Commons

Disorders such as schizophrenia can originate in certain regions of the brain and then spread out to affect connected areas. Identifying these regions of the brain, and how they affect the other areas they communicate with, would allow drug companies to develop better treatments and could ultimately help doctors make a diagnosis. But interpreting the vast amounts of data produced by brain scans to identify these connecting regions has so far proved impossible.

Now, researchers in the Computer Science and Artificial Intelligence Laboratory at MIT have developed an algorithm that can analyze information from medical images to identify diseased areas of the brain and their connections with other regions.

The MIT researchers will present the work next month at the International Conference on Medical Image Computing and Computer Assisted Intervention in Nice, France.

The algorithm, developed by Polina Golland, an associate professor of computer science, and graduate student Archana Venkataraman, extracts information from two different types of magnetic resonance imaging (MRI) scans. The first, called diffusion MRI, looks at how water diffuses along the white-matter fibers in the brain, providing insight into how closely different areas are connected to one another. The second, known as functional MRI, probes how different parts of the brain activate when they perform particular tasks, and so can reveal when two areas are active at the same time and are therefore connected.

These two scans alone can produce huge amounts of data on the network of connections in the brain, Golland says. "It's quite hard for a person looking at all of that data to integrate it into a model of what is going on, because we're not good at processing lots of numbers."
So the algorithm first compares all the data from the brain scans of healthy people with those of patients with a particular disease, to identify differences in the connections between the two groups that indicate disruptions caused by the disorder.

However, this step alone is not enough, since much of our understanding of what goes on in the brain concerns the individual regions themselves, rather than the connections between them, making it difficult to integrate this information with existing medical knowledge.


}

© 2021 PopYard - Technology for Today!| about us | privacy policy |